Region-dependent effects of flibanserin and buspirone on adenylyl cyclase activity in the human brain.
نویسندگان
چکیده
The mode of action of antidepressant drugs may be related to mechanisms of receptor adaptation, involving overall the serotonin 1A (5-HT1A) receptor subtype. However, so far, the clinical effectiveness of selective compounds acting at this level has proved disappointing. This could be explained by the heterogeneity of 5-HT1A receptors within the central nervous system. In animals, two 5-HT1A agonists, flibanserin and buspirone, have shown different pharmacological properties, depending on the brain region. Since no evidence supports this observation in humans, this study sought to investigate whether these two drugs exert different effects on 5-HT1A receptor activation in three different human brain areas: the prefrontal cortex, hippocampus and raphe nuclei. 5-HT1A-mediated inhibition of forskolin-stimulated adenylyl cyclase (AC) was taken as an index of 5-HT1A receptor activation. Flibanserin significantly reduced the activity of AC post-synaptically, i.e. in the prefrontal cortex [EC50 (mean +/- S.E.M.), 28 +/- 10.2 nM; Emax, 18 +/- 2.3%] and in the hippocampus (EC50, 3.5 +/- 3.1 nM; Emax, 20 +/- 4.0%), but had no effect in the raphe nuclei, i.e. at pre-synaptic level. Vice versa, buspirone was only slightly but significantly effective in the raphe (EC50, 3.0 +/- 2.8 nM; Emax, 12 +/- 1.9%). Agonist effects were sensitive to the 5-HT1A antagonists WAY-100135 and pindobind 5-HT1A in the cortex and raphe nuclei, whereas buspirone antagonized flibanserin in the hippocampus. These findings suggest a region-related action of flibanserin and buspirone on forskolin-stimulated AC activity in human brain.
منابع مشابه
اندازهگیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ
Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn. Adenylyl cyclase activity in the pres...
متن کاملProtective effect of forskolin on diabetes induced nephrophaty via antioxidant activity
The present study aimed to investigate the role of adenylyl cyclase activator in preventing diabetic nephropathy via antioxidant activity in rats. Biochemical parameters were performed to confirm Streptozotocin induced nephropathy in rats. Male Wistar rats were used in the present study to reduce the effect of estrogen. Rats were subjected to high fat diet (HFD) for two weeks followed by low do...
متن کاملNeonatal polyamine depletion by alpha-difluoromethylornithine: effects on adenylyl cyclase cell signaling are separable from effects on brain region growth.
Ornithine decarboxylase (ODC) and the polyamines play an essential role in brain cell replication and differentiation. We administered alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, to neonatal rats on postnatal days 5-12, during the mitotic peak of the cerebellum, a treatment regimen that leads to selective growth inhibition and dysmorphology. In adulthood, cell signal...
متن کاملAgonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.
5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate...
متن کاملTHE EFFECTS OF HYDROSTATIC PRESSURE ON Ax ADENOSINE RECEPTOR SIGNAL TRANSDUCTION IN BRAIN MEMBRANES OF TWO CONGENERIC MARINE FISHES
To investigate the effects of deep-sea temperatures and hydrostatic pressures on transmembrane signal transduction, the Ax adenosine receptor/inhibitory G protein/adenylyl cyclase complex was studied in brain membranes from two congeneric marine fishes that live at different depths. These scorpaenid species, Sebastolobus alascanus and S. altivelis, have been used as a model system to study adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2002